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A self-consistent treatment of a phase transition with a scalar order parameter 
in the ordered and disordered state is described. The factorization of the 
correlation functions in the disordered phase leads to a shift of the transition 
temperature, a linear divergence (v = 1) for the correlation length, a quadratic 
divergence (7 = 2) for the susceptibility, and a finite value (c~ = - - l )  for 
the specific heat. In the ordered phase the factorization of the correlation 
functions leads to no divergences in the correlation length and susceptibility. 
A study of the free energy shows that order persists above the transition 
temperature found by assuming disorder. The requirement of thermodynamic 
stability induces a first-order transition at a temperature which lies between 
the bare transition temperatm'e and the shifted one. 
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1. I N T R O D U C T I O N  

In  a p r e v i o u s  p a p e r  (1) (he rea f t e r  re fe r red  to  as I) we p r e s e n t e d  a f o r m a l i s m  

based  o n  f i e ld - theory  t e c h n i q u e s  fo r  t he  desc r ip t ion  o f  c o n t i n u o u s  phase  

t rans i t ions .  
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The partition function was written as a functional integral 

Z exp[--/~F{~(x)}] 
d 

(I) 

where r/(x) is a local, scalar order parameter defined on a coarse-grained 
space and/3 is the inverse temperature (kBT) -1. The functional exp[--/3F{~7(x)}] 
gives the statistical weight of a prescribed order parameter configuration 
after all other variables have been summed over. 

The model is defined by the form of the functional F{~?}. For  the sake of 
generality in I we considered 

F{~/} = A(12) ~(1) ~/(2) q- B(1234) ~7(1) r/(2) ~(3) r/(4) -- / , (1)  ~7(1) (2) 

with 1 = xa, 2 = xz,  etc., and volume integration over repeated indices. 
In the present calculation we will use the Landau-Ginzburg Cz) form for A 
and B, namely 

A(12) = (A -- Ao V~) 8(1 -- 2), 

with 

A = c~ (T-  T~), 

B(1234)  = B8(1 - -  2) 3(2 - -  3) 3(3 - -  4) 

(3) 

a > O ,  B > O ,  T ~ > O  

Tc is the bare transition temperature. 
The n-point order parameter correlation function is obtained taking the 

ensemble average of the product of n field variables 

<r/(1) r/(2) "" r/(n)> = Z - t  f ~{r/} r/(1) r/(2) "" r/(n) e-~e{ "} (4) 

Most physical quantities of interest in the critical region can be expressed in 
terms of  the average order parameter 

g(1) = ( r l0) )  (5) 

and the two-point cumulant 

q(12) = ([~7(1) -- g(1)][r/(2) -- g(2)]> (6) 

The equations satisfied by g and q were derived in I. These equations are 
formally analogous to the equations of motion for the condensate and the 
two-point Green's function in quantum many-body theory/3~ 

In particular, the equation for q(12) takes the form of Dyson's equation 

q-a(12) = qff'(12) -- M(12) (7) 
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where 
qa~(12) = 2/3,4(12) (8) 

and M(12), the analog of the self-energy, is a functional of g and q. In the 
disordered phase, where the average order parameter is zero, Eq. (7) is the 
only equation to be considered. 

Expanding M in skeleton diagrams m gives self-consistent approximation 
schemes. 

The most simple approximation of this type is the Hartree approxima- 
tion, where only the first-order contribution to M is retained. In Fourier 
space this leads to a self-energy independent of k. A feature of this approxima- 
tion is that all higher correlation functions factorize in terms of the two-point 
correlation function. Consequently, the Hartree approximation cannot be 
expected to hold in the immediate neighborhood of the transition, where 
the large, long-wavelength fluctuations are strongly interacting. 

From a different poin of view, the Hartree approximation emerges on 
replacing the Landau-Ginzburg free energy functional 

F = f dax [A0(V~/) 2 + A~/Z(x) + B~/4(x)I (9) 

by the linearized form 

f dax {Ao(Vr/) 2 + [A + 6B('q2(x))] "q2(x) -- 3B('qZ) 2} (10) 

in the exponential of equation (1). The factors 6 and 3 are combinatorial factors 
appropriate to a scalar classical field. Finally, (~/2(x)) is to be determined 
self-consistently from Eq. (4). 

The factorization of the correlation functions then follows from the 
Gaussian character of the statistical weight. 

The interest of this approximation is that it gives a first, nontrivial 
correction to the classical theory. 

Here we follow the approximation to its logical conclusions. It is a 
self-consistent theory and does not break down on its own accord. However, 
the consideration of further terms in the exact theory sets limits to the region 
in which the present approximation can be a good approximation. These 
limits are discussed in Section 7. Murata and Doniach's (m treatment of the 
weak itinerant ferromagnet, which came to our attention after the completion 
of this work, has to be viewed as the same approximation as the one treated 
here for values of the temperature where neither the nonlinearities reported 
here nor those of the exact critical behavior are important. 

The main results are a quadratic divergence for the susceptibility and a 
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linear divergence for the correlation length. In I it was shown that the can- 
cellation of the classical terms cannot be obtained in any finite order of 
perturbation expansion in B for the correlation function. 

In the ordered phase there is a nonvanishing average order parameter g. 
The equation satisfied by g was shown in I to be 

/3-Zqo1(12 ) g(2) = ~(1) -t- K(1) (11) 

where K(1), the effective external field, is a functional of g and q. In order to 
specify an approximation in the ordered phase, both M and K have to be 
given. The relationships between M and K and their reflection in approximate 
treatments were discussed in I. 

In the following we shall see that a first-order approximation for K and 
M fits in the scheme of the ~-derivable approximations. ~6) However, it also 
turns out that a first-order self-energy is insufficient to describe a continuous 
transition when approaching the transition from the ordered phase. A study 
of the free energy shows that a first-order approximation for the self-energy 
on both sides of the transition is consistent only with a first-order transition. 
The appearance of such spurious first-order transitions has been discussed by 
Pytte 17a) and Gillis and Koehler 17b) with regard to the self-consistent phonon 
approximation for displacive phase transitions. 

This problem arose also in the context of Belyaev's at~ treatment of the 
Bose liquid. There the attainment of a gapless approximation is related to 
the absence of a gap in the excitation spectrum. The requirement of gapless- 
ness leads to a very complicated integral equation which is solved by 
Belyaev c16) to second order in the interaction. (Compare also Ref. 6, 
Section 6.) 

As far as the continuity of thermodynamic quantities across the transi- 
tion is concerned, the condition of gaplessness [Eq. (59) below] needs to be 
satisfied only with respect to the zero-momentum component of the order 
parameter? This condition can be imposed and solved exactly. It results in 
the spherical model. A more detailed discussion of this point will be presented 
elsewhere. 5 

2. O U T L I N E  O F  T H E  A P P R O X I M A T I O N  S C H E M E  

by 
The thermodynamic free energy W is related to the partition function 

W = --/3 -1 log Z (12) 

4 See also concluding remarks of Section 7. 
5 One of us (D.J.A.) is indebted to Dr. Cyrano De Dominicis for a conversation in which 

this point was clarified. 
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In I we derived a Luttinger-Ward (s) expression for the free energy which 
is a functional of g and q and which up to a constant independent of/3, A, B, 
and/,  coincides with W: 

W{g, q} = --/x(1) g(1) q- A(12)[g(1) g(2) q- q(12)] 

- -  �89 - 1  log q(11) - -  { ~ { g ,  q}  
(13) 

The notation log q(ll) stands for the trace of the matrix log q(12). The 
functional ~{g, q} is related to the quantities K and M in Eqs. (11) and (7) by 

8r  q = 2K(1), a r  g = /3-*M(12) (14) 
8g(1) 3q(12) 

The above expression for the free energy has the property that it is 
stationary for variations of g and q about their physical values when the 
parameters are kept fixed. The proof of the variational property requires 
only that g and q satisfy Eqs. (11) and (7) and that M and K are related to r 
by Eq. (14). Therefore consistent approximations for g and q can be derived 
by approximating the functional r  constructing K and M according to 
Eq. (14), and solving the resulting equations (11) and (7). 

In this paper we shall consider the first-order contribution to ~. Namely 
representing pictorially the interaction by a dot, the order parameter g by a 
wavy line, and the correlation function q by a straight line m 

o:X.A- 8 
or analytically 

r q} = --2B(1234)[g(1) g(2) g(3) g(4) 

+ 6g(1) g(2) q(34) -[- 3q(12) q(34)] (15) 

Consequently, according to Eq. (14), 

----- --4B(1234)[g(2) g(3) g(4) -{- 3g(2) q(34)] (16) 
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and 

M(12) = / ~ ' Z .  -i- (~  

= --12fiB(1234)[g(3)g(4) + q(34)1 (17) 

Inserting these expressions for K and M in Eqs. (7) and (11) with the 
form (3) for the couplings, one obtains a system of equations for g and q. In 
the presence of a uniform external field the system is translationally invariant 
and the equations for g and q take the form 

2[A + 2B(g 2 + 3X)]  g = t~ 

2/3[A -- Ao V2 § 6B(g ~ + JV)] q(r) = ~(r) 

(18) 

(19) 

where r = (1 - -  2) .  ~ is to be determined self-consistently by 

./V" = q(ll)  = ~im q(12) (20) 

These equations apply both below and above the transition. Once these 
equations have been solved the free energy is given unambiguously by 
Eq. (13). 

3. THE DISORDERED PHASE 
In the disordered phase, namely for temperatures greater than the 

transition temperature and in the absence of an external field, one usually 
takes g = 0. Consequently, the k-Fourier component of q(r) satisfies the 
equation 

q(k) = [2/3(Ao k2 + A -I- 6BJV')] -z (21) 

with 

---- (I/D) ~ q(k) (22) 
k 

where f2 is the volume of the system. 
Transforming the sum into an integral, the requirement of self-con- 

sistency leads to the following equation: 

1 f f  k 2 
~'~ -- 47r~Ao dk k2 + ~_~ (23) 
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where the correlation length ~ is given by 

E= ( A -l- 6B~U )-,/2 
Ao 

(24) 

The momentum cutoff/5 has its origin in the coarse-grained nature of the 
field ~/(x). As was discussed in I, the phenomenological free energy functional 
(2) can be thought of as the effective Hamiltonian of the system after all 
fluctuations with wavelength shorter than the size of the coarse-graining cells 
have been summed over. The size of the cells is roughly the range of the 
interaction (/5)-'. All components of the field with k >/3 are assumed to have 
been integrated out; consequently, the field ~/(x) does not contain wave- 
lengths shorter than (/5)4. 

Carrying out the integration, one obtains the following equation for the 
correlation length: 

~:-2 = ~o~ + (-~-) ~ -- (-~-) ~ tan-1 ( ~P-~-_I ) (25) 

where 

fo = (Ao/A) 1/2 (26) 

is the classical correlation length. (9) The quantity 

R = 27r2Ao~/3BkBTc (27) 

is a fundamental length that separates the classical region from the non- 
classical region. Namely, the criterion for the validity of the classical theory 
takes the form (~o/R) ~ 1.a0) 

4. T H E  T R A N S I T I O N  T E M P E R A T U R E  

The static susceptibility is related to the order parameter correlation 
function via m 

X =/3q(k ----- 0) 

At the transition we expect the susceptibility to diverge. Therefore we define 
the transition temperature T, by 

q-l(k = O, T~.) = 0 (28) 

From Eq. (21) it follows that the above condition is equivalent to 
(A~ + 6 B ~ )  = 0, or  ~- ' (r ,r )  = 0. 
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At temperature T 

q-a(k = 0, T) = 2/3A(k = 0, T ) -  M(k = 0, T) 

where the self-energy M is the correction to the classical behavior. 
At T~ Eq. (28) implies 

2/?,,A(Tr) -- M(0, T,,) = 0 

We may therefore rewrite q-~(0, T) as 

q-l(0, T) = 2/3[AO, T) --  A(0, T,.)] q- 2(/3 -- [30 A(0, T~) -- [M(0, T) 

- -  M O ,  Tr)] 

If  A is temperature independent, the first term on the right hand side 
vanishes. If  it has the form (3), it is linear in (T -- T~). Similarly (]3 --/3~) is 
linear to lowest order. Thus the first two terms on the rhs give the classical 
contribution, Y = 1. 

Beyond the classical theory one expects X oc (T -- T~) - ,  with 7 > 1; in 
that case [M(k = 0, T ) -  M(k = 0, T~)] must contain a linear term in 
( T -  T~) which exactly cancels the classical contribution. Furthermore, as 
was observed in I, a result of  this type cannot be obtained in any approxima- 
tion of finite order in perturbation theory. 

We shall now see that in the Hartree approximation, where 
M ( k )  = - -12 /3B. /V ,  the cancellation of the classical term indeed occurs. 

From Eq. (25) we notice that the solution ~-~ = 0 can occur only if 
[~o2-5  ( T I T s ) p / R ]  = 0. The renormalized transition temperature is then 
given by 

T~ (29) 
T~ = 1 + ( r /R )  

where we have introduced the effective interaction range a~ 

r = (Ao/c~Tc)*/~ (30) 

which is related to the momentum cutoff by ~ = r -1. For  small values of ~-1 
Eq. (25) can be rewritten as 

T~ ~7 ~-1 s e - z =  r - % - - ( e +  1 ) ~ - ~ -  (31) 

where E = ( T  - -  T~.)/T~ is the reduced temperature. 
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Expanding to lowest order in e 

~-1=2--7r (T~)Rr_~e (32) 

This result gives for the critical exponent of the correlation length ~ = 1. 6 
The value 7 = 2 for the critical exponent of the susceptibility follows 
immediately from the relation 

X = [ 3q (k  = -  O) - -  ,~2/2Ao (33) 

This proves that the self-energy correction contains a term linear in e which 
exactly cancels the classical contribution. From Eqs. (24) and (32), in fact, 
one has 

JV'--~A~= ~ -g- -~  Rr -2 ~2___6B e (34) 

In terms of the self-energy M = --12flBJg" the last expression means that 
for e -+ 0 there is a term in M of the form -- 2/3T,.e, which is independent of B. 

In the opposite limit, namely away from the transition, one expects to 
recover the classical result. 

In fact from Eq. (25) in the limit ~:-z/p _+ oe to lowest order, one has 
~:-2 = ~o2, which implies ~ = 0. This can be clearly seen in Fig. 1, where 
the solution of Eq. (25) for r /R  - -  0.1 is compared to ~:o 2. 

6 Fo r  a definition o f  the  critical exponents  see Fisher.  m) 

/ 
L 

0 l i l I i l l I f l 

0 . 2  0 . 4  0 , 6  0 . 8  1.0 1.2 L 4  1.6 i .8 

E = ( T - T r ) / T  r 

Fig. 1. C o m p a r i s o n  o f  rs e z (cont inuous  line) above the  
t ransi t ion with its classical counte rpar t  r~:o z (dashed line) 
for  r/R = 0.1. The  do t -da sh  line represents  the  asympto t i c  
behavior  o f  r~ :-~. 
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5. T H E  S P E C I F I C  H E A T  

To complete the analysis of the disordered phase, we shall now compute 
the specific heat. With the form (3) for the couplings and the approximation 
(15) for the functional ~b, the free energy (13) becomes 

W{ g, q(k)} = s -+- Ag  ~ @ Bg 4) @ ~, (A + Ao k2) q(k) 
k 

3B 
q- 6Bg ~ ~ q(k) -? -~-  ~ q(k) q(k') 

k k k '  

-- ~]3 -1 ~ log q(k) (35) 
k 

In the disordered phase (/z = 0, g = 0) and at equilibrium, that is, for 
values of q(k) that satisfy Eq. (21), the above expression for the free energy 
becomes (Appendix A) 

W{q(k)} = ~ �89 -1 --  3BYZA/'2 - -  ~fl-z ~ log q(k) 
k k 

(36) 

A similar expression for the free energy has been successfully applied by 
other authors az,la) to the computation of the specific heat of a two-dimen- 
sional superconductor. (14) 

t.O 

$ 

o y y 

0.5  

-I.0 -0.5 0 0.5 

~= ( T - T r ) / T  r 

Fig. 2. Specific heat for r/R ~ 0.1 (thin continuous lines) 
and for r/R = 1 (thick continuous lines). The dot-dashed 
lines represent the classical specific heat for the same values 
of r/R, The dashed line represents the continuation of the 
specific heat in the region of thermodynamic instability. 
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The entropy and the specific heat are then given by (Appendix A) 

S = --f2 ~ ~Af 4- log q(k) (37) 

e ~  0 ~  (38) c - -  ~ _ f 2 ~ . j r  _ D ( A  + 6BJf f )  ~ - -  s ~ T  

Approaching the transition the specific heat tends linearly to a finite value 
(Fig. 2). In fact, for �9 ~ 1 

~ A C I 1  a a 8 ( a +  1) 3 ] 

- - 2  ( 2 )  a (a + a 1)5 e3I (39) 

where a = R/r, and 

A C -  ~2T~= 3kBar-3 
2B 4~r ~ (40) 

is the classical specific heat jump. 
Taking the limit B --+ 0 in the formula (38) and then letting T--> T~, 

one obtains (see Appendix B) an asymptotic expression for the specific heat 
which diverges like [ ( T -  Tc)/T~]-I/z. a~ 

6. T H E  O R D E R E D  P H A S E  

In the ordered phase the average order parameter has a nonvanishing 
value even in absence of an external field. Thus the physical solution of 
Eq. (18) for/z = 0 is 

g2 =_ --(A 4- 6BJff)/2B (41) 

The equation for the correlation function becomes 

q-l(k) = 2fiAo[k 2 4- E -z] (42) 

where the correlation length in the ordered phase is given by 

~: ~= [--2(A q- 6B,/V')/Ao] -1/z (43) 
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1.4 

].1.0 

0 5  

0 I I r i f~  ] I~  I 1 I. 

- 0 . 5  -0.4- - 0 . 3  - 0 . 2  -O. I  0 0.1 0 .2  0 ,5  0.4 0.5 

( =  ( T - T r ) / T  r 

Fig. 3. Self-consistent solution of Eqs. (25) and (44) for 
r/R = 0.1 (thin continuous lines) and for r/R = 1 (thick continuous 
lines). The dot-dashed lines represent the classical limit, namely 
r~:ol = ~1/2 above the transition and rfo 1 = (--2e)1/2 below the 
transition. The dashed line indicates the continuation of f-z in a 
region of thermodynamic instability. 

Proceeding as in Section 3, the following self-consistency relation is 
obtained: 

~:-2~ --2r-% + 2(, + 1) a ~-z ( p_~-_~ ) a § 1 --R- tan-Z (44) 

The solution of Eq. (44) is plotted in Fig. 3 for the values 1 and 0.1 of the 
parameter r/R. One can see that lim~_.0- ~-1 va 0. 

Thus, as T,r, the transition temperature defined assuming disorder, is 
approached from below the correlation length does not diverge. Similarly 
the susceptibility, related to ~: by Eq. (33), does not diverge and the order 
parameter g2 = (Ao/4B) ~-2, does not vanish. However, at e = 0 Eq. (44) 
also admits the solution ~-~ = 0. In order to clarify the origin of this addi- 
tional solution and the nature of the transition, we shall now investigate the 
behavior of the free energy. The expression for the free energy given in 
Eq. (35) defines a hypersurface in the space of the infinitely many variables 
{g, q(k)}. The minima of this hypersurface correspond to the equilibrium 
states of the system. We want to determine how the free energy depends on g. 

If q(k) is taken at its stationary value, given by Eq. (42), and W(g)  is 
the solution of 

JV'(g) = (1//2) Z {2/3[A0 k2 + A -t- 6B(g ~ -+- ~4"(g))]} -1 (45) k 
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then Eq. (35) gives for the free energy a function o fg  only, which reads 

W 1 fT-i 

1 f7 -z 
log{2fl[Ao k~ + A + 6B(g ~ + -4r(g))]} -~ 

2 D -s (46) 

Equation (46) gives the value of the free energy along a locus of points on the 
hypersurface which goes through the equilibrium states of the systems. 

In Figs. 4 and 5 we have plotted the free energy as a function of the order 
parameter for various values of e for the values 1 and 0.1 of the parameter 
r/R. At low temperature the free energy has a pronounced minimum at the 
equilibrium value of the order parameter. From Eq. (41) one sees that the 
equilibrium value of the dimensionless order parameter u = (4Br2/Ao)l/2g 
coincides with the value of the dimensionless inverse correlation length r~ :-1. 
In other words the value of u at which the minimum of the free energy occurs 
coincides with the solution of Eq. (44). 

Thus as the temperature is raised s e-1 (orE) decreases; however, the 

- 0 . 0 5  

-0.10 
T o  m. 

% 
,r 

-0.15 

. \ \ \ \ \ \ \ ' ,02 

-0 .20 

- OJ 

i i 
-0 .25 015 I O,lO 0115 0 

(4Br2 /A0) l /2g  

Fig. 4. Free energy vs. order parameter for r/R = 1. 
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0.2 

01 

0 
Tu 

% 
-0,1 

-0 .2  

0,3 
0 0.5 

14 BrZ/Ao 11/2 g 

Fig. 5. Free energy vs. order parameter for r/R = 0.1. 

minimum does not  tend to zero as e vanishes. By contrast,  at E = 0 the 
equilibrium value o f  ~-1 (or g) is nonzero.  Furthermore,  the extremal point  at 
the origin, which corresponds to the solution g = 0 o f  Eq. (18) for/~ = 0, at 
e = 0 shifts f rom a max imum to a minimum. This corresponds to the onset 
at E = 0 o f  the new solution ~:-1 = 0 of  Eq. (44). This new solution persists 
for  e > 0 and corresponds to a local max imum of  the free energy; therefore 
it must  be discarded on grounds o f  thermodynamic  stability. This max imum 
eventually merges with the min imum corresponding to the stable solution, 
producing an inflection point. 

The transit ion occurs at the temperature E* > 0 at which the two minima 
of  the free energy have the same value. For  r /R  = 1 one has E* = 0.18 and 
for  r /R  = 0.1, e* = 0.008. Clearly, it is a first-order transit ion (Fig. 6). 

Finally we compute  the specific heat  in the ordered phase. The equili- 
br ium expression for  the free energy 

T~ + t ~2 log q(k) (47) 

is obtained by inserting Eqs. (41)-(43) into Eq. (35). 
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0 0.04 0.08 0.12 0.t6 0.20 xlO-t 
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" / ' /  I j / . w  ] 

- / /  I 
. i  I 

0 0.04 0.08 0.12 0.16 0.20 
-0.08 i 

-0.04 0.24 

�9 = ( T - T r ) / T  r 

Fig. 6. Gibbs plots for the free energy for 
r/R = 0.1 (top) and r/R = 1 (bottom). The dashed 
line indicates the value of the free energy at the origin 
(g = 0) and the continuous line indicates the value 
of the free energy at the minimum g ~ 0. 

The entropy and the specific heat are then given by 

S = D ( A  _2W) OA kn -b-f + ~- ~ log q(k) (48) 

C = T ~ ~-  + 2f2 + ~4/" + (A + 6B~V') ~ + ~r~ ~ - f - - ]  �9 
[ 4B 

(49) 

The specific heat per unit volume in the ordered phase is plotted together 
with the classical contribution (f2r-3kB/12rr 2) § (E2~2T/2B) in Fig. 2. 

7. D I S C U S S I O N  

We shall first derive a validity criterion for the approximation. This is 
readily obtained extending to the present case the dimensional considera- 
tions of Ref. 10. 

In the disordered phase an nth-order diagram for the self energy con- 
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tains 2n -- 1 q-lines. In the limit in which the self-consistent Hartree approxi- 
mation is valid one can estimate the nth-order contribution to M by 

M (n~ oc (fiB) n f dxl  "'" dx~_l q~n-x (5o) 

where q is a Hartree correlation function. In coordinate spaces one has 
q(r) oc e-,/~/flAor. Thus for r < ~ one can approximate the correlation 
function by (flA0r) -1 and the order of magnitude of M In) is given by 

M (n) oc (Bfi) ~ ~-2/(fiAo)~n-z (51) 

Comparing with Eq. (27) 

M ~) oc 2~Ao~-2(~/R) ~ (52) 

Since in the Hartree approximation q-Z(k = 0 ) =  2fiAo~ -~, we see 
from Eq. (52) that higher-order contributions to the self-energy are negligible 
for ~/R < 1. Using Eq. (32), we can express the criterion of validity as a 
condition on the temperature, namely 

rr (r/R) 2 (53) 
e >  2 l + (r/R) 

If  we compare with the condition for the validity of the classical theory 
~o/R < 1, which gives 

( T -  rc)/Tc > (rlR) "~ (54) 

we find no significant improvement, since r/R <~ 1. 
We note that the criterion for the validity of the approximation is 

modified if one allows for a vector order parameter. In particular, in the 
limit of an infinite number of components the approximation becomes exact 
and gives the spherical model, ls,19,2~ 

In the case of an n-component vector field the coupling constant is 
replaced by Bin. Each closed loop contains a sum over the field components 
and thus carries a factor n. The argument is that for large n the dominant 
diagrams in any given order are those that contain the maximum number of 
closed loops, namely the bubble diagrams. An nth-order bubble diagram 
contains n -- 1 loops; therefore is goes like 1/n. In the limit n ~ oe (spherical 
model) the only term which survives is the Hartree term. 

Returning to the scalar field, in the ordered phase we arrive at the same 
result as in the disordered phase. The evaluation of the terms that do not 
contain the order parameter is unaltered. For  those terms that do contain 
the order parameter we note that order parameter lines occur in pairs which 
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can be regarded as resulting from cutting open one q-line. Thus an nth-order 
diagram with two g-lines contains 2n -- 2 q-lines; consequently, 

M (~) oc (fiB)" f dx 1 "" dx._l  g2q2.-~ (55) 

At equilibrium we have g2 : (Ao/4B) ~-2; therefore 

M o~ oc (fiB)" Ao ~.-3 
B (flAo) ~'`-2 

namely, 

(56) 

Some of the results we have obtained in the Hartree approximation 
reduce to classical results in the limit B -+ 0, or equivalently R -~ oe. For the 
correlation length this can be seen directly from Eqs. (25) and (44), or 
qualitatively from Fig. 3, where one can compare the behavior of ~-1 for 
two different values of r/R to the classical counterpart ~:o 1. 

The susceptibility, which is simply related to the correlation length by 
Eq. (33), also tends to its classical counterpart in the limit R - +  ~ .  Note, 
however, that there is no classical limit for the order parameter and the 
specific heat. We shall return to this point later. 

From the behavior of the correlation length it seems that the first-order 
transition in the Hartree approximation becomes a second-order transition 
in the classical limit R - ~  oe. This might be surprising because while the 
classical theory treats only the order parameter self-consistently and neglects 
entirely the order paramater fluctuations, the approximation we have con- 
sidered treats self-consistently both the order parameter and the order param- 
eter fluctuations. However, there is an important difference in the structure 
of the equations obtained in the two cases. 

The order parameter, the correlation length, and the susceptibility of the 
classical theory can be obtained by inserting the following approximations to 
M and K i n  Eqs. (7) and (11)~1.9~: 

K(1) = = - 4B(1234)g (2)g(3) g (4) (57) 

M(12) = ~ =-12BB (1234)g(3)g (4) (58) 

82219/x-2 
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Given these expressions for M and K, it is not possible to construct a func- 
tional ~ of g and q that satisfies Eq. (14). Furthermore, the expression for 
the free energy we have obtained in Eq. (47) does not reduce to the Landau 
free energy in the limit R ~ 0% since this limit does not exist for the classical 
free energy in the ordered phase. This explains why the expression for the 
specific heat given in Eq. (49) does not have a classical limit for R --~ oo. One 
does not encounter this problem in taking the limit for the correlation length 
and the susceptibility because these quantities, contrary to the order param- 
eter and the specific heat, have classical counterparts which are independent 
of B. A second important difference between the Hartree approximation and 
the classical theory related to the structure of M and K stems from the fact 
that the expressions given in Eqs. (57) and (58) satisfy the functional relation 

M(12) = / 3  gK(1)/Sg(2) (59) 

Equation (59) is a property of the exact theory. (1) 
An approximation which verifies Eq. (59) in quantum manybody theory 

leads to a gapless excitation spectrum. (6~ In the present context Eq. (59) is 
a necessary and sufficient condition for the validity of the result of linear 
response theory 

q(12) = / 3  -z ~q(1)/~t~(2) (60) 

in an approximate theory, m 
By contrast, the self-energy and the effective field of the Hartree approxi- 

mation, Eqs. (16) and (17), do not satisfy Eq. (59). In fact, from Eq. (16), 
one has 

o 6K(1) A 4- 6g (2) = ( ~  
§ (61) 

where the shaded bubble represents the sum of the terms coming from the 
variation of q with respect to g and is not present in Eq. (17). This term 
obviously disappears in the disordered phase, where the Hartree approxima- 
tion is consistent with Eq. (59). 

Although we will not attempt to prove it here, one can infer that the 
validity of Eq. (59) is required for an approximation to exibit a second- 
order phase transition. Namely, the existence of a singularity for the cor- 
relation function at k ----- 0 and T = Tr is related to the validity of Eq. (59) 
through an extension to finite temperatures and classical systems of the proof 
of the Pines-Hugenholtz theorem as given, for example in Ref. 6, Section 6. 
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APPENDIX  A. FREE ENERGY, ENTROPY, A N D  SPECIFIC HEAT 
IN THE DISORDERED PHASE 

With the form (3) for the couplings and the approximation (15) for qb, 
Eq. (13) becomes 

W{ g; q(k)} = f2(--i~g + Ag 2 + Bg 4) + ~ (A -5 Ao k2) q(k) 
k 

3B 
+ 6Bg ~ ~ q(k) + ~ Z q(k) q(k') 

k kk"  

1 /3_~ Z log q(k) 
2 k 

In the disordered phase, g 
reduces to 

W{q(k)} = Z ~_fl-1 _ 3BO~4r2 _ �89 Z log q(k) 
k k 

Differentiating with respect to the temperature, we obtain the entropy: 

(A.I) 

= 0, and for q(k) satisfying Eq. (21), Eq. (A.1) 

(A.2) 

S __ 
OW 
ST 

kB 6BT2JV" ~ T  kB -~- + q- -~- ~ log q(k) 

1 fi-z ~q(k) (A.3) + Y' q-l(k) e r  
k 

Furthermore, from Eq. (21), 

aq(k) 1 SA SJV 
~T -- T q(k) -- 2/3 [ ~  + 6B -Tff-]  q2(k) (a.4) 

Thus, inserting in Eq. (A.3), we obtain 

0A kB 
S = --s ~ T -  JV -~ -~- ~ log q(k) (A.5) 

Differentiating once more with respect to the temperature, we obtain the 
specific heat 

OS - S2A SA ~JV" kB ~q(k) 
C =  T ~T -- "(2T-b--TT ~ 4 r -  g2T ~T ST + T ~ ~ q-l(k) ST 

Using Eq. (A.4) and A = a(T -- T~), the above result reduces to 

C = y -- s -- 9(A + 6BJV') 0JV" S.AX 
ST ~3T 

(A.6) 
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The temperature dependence of ~/~ for small e is obtained from Eqs. (24 and 
32), i.e., 

A0 .~ = -~-(~-s _ ~ )  
with 

A @ 6B J/" 

Ao 
[T )]' R --~r- s 2 ( a + b  ~ ,  ~ a = - - ,  

r 
b = rfi 

Inserting in Eq. (A.6), we obtain 

~Qr -3 a 2 a s 8 "1 (a + b)3/ 
a +  b 7r s d 

(A.7) 

A P P E N D I X  B 

In the limit B -+ 0 the fluctuations are given by 

This gives 

1 1 f f  k ~ 
= ~-  ~ q0(k) = ~ dk kS + ~:o2 (B.1) 

~ o  = 47rSflA ~ 41rSflA~ tan -1 

In the neighborhood of the transition 

~o  ~ 4zrSflAo 87r/~Ao 

Thus the dominant term in the temperature derivative is given by 

~T -~- 16~'fiAo \ -~o/  ( T -  To)-z/2 (B.3) 

Inserting Eqs. (B.2) and (B.3) in Eq. (A.6), we see that in the limit B = 0 the 
specific heat diverges as [ ( T -  Tc)/T~]-I/2 when T--~ T~. 
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